If it's not what You are looking for type in the equation solver your own equation and let us solve it.
255.96x^2+68.4x-507.97=0
a = 255.96; b = 68.4; c = -507.97;
Δ = b2-4ac
Δ = 68.42-4·255.96·(-507.97)
Δ = 524758.5648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68.4)-\sqrt{524758.5648}}{2*255.96}=\frac{-68.4-\sqrt{524758.5648}}{511.92} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68.4)+\sqrt{524758.5648}}{2*255.96}=\frac{-68.4+\sqrt{524758.5648}}{511.92} $
| 1.75=(4x^2)/(x^2-2.3x+1.3225) | | (1.15-x)(1.15-x)=0 | | X2-28+3x=180 | | 105+x=124 | | (1-w)(3w-2)=0 | | 1.5*10^8*x^2+x-0.288=0 | | 192=267-u | | 99-y=193 | | 71-x=x-7 | | 6x-21-3x+14=6+4x-19 | | 2(4+1.5y)=3y+8 | | x=72-2x | | 3x^2+-14x+-25=0 | | 2a^2=1000 | | 16z-14z=16 | | 2/7(2s=3) | | 3k²+14k-45=0 | | 5x-31-3x+13=5+4x-19 | | -7b-1=-5(b÷3) | | 12=2πr | | -43-4x=3(1-9) | | -16t^2-21t+106=0 | | 319.95x^2+85.5x-500.96=0 | | -16t^2-21+106=0 | | n-8*10=3*7 | | 34/b=12 | | 2(180-5x)+x=180 | | -7x-30=2x-10 | | 14x-30=-10 | | 8x-15=96 | | 255.96x^2+68.4x-521.391=0 | | x–7=1 |